Ergodic Pseudo-Random Number Generators

Tatsuki IKEDA*

11th January 2022

Abstract

Mathematical pseudo-random number generators in general have a period, and the length of the period is a measure of the spec of the pseudorandom number generator. The accuracy of Monte Carlo methods depends on the period of the pseudo-random numbers[3], but it is common to use physical random numbers to obtain non-periodic random numbers.

On the other hand, physical random numbers have a high threshold for introduction because they requires the preparation of dedicated equipment or the use of functions that depend on the OS or CPU architecture.

In the previous work by Hiroshi Sugita[8], a random number generator using irrational rotation can generate an infinite period pseudo-random number sequence. However, there is a problem that this random number generator fails to pass some randomness tests. In addition, this random number generator is operated by rational numbers which strictly approximate irrational numbers, and its period is finite in practice. Therefore, by using the ergodic property and adding the bounce operation to the sequence generation, the number of tests that can be passed is increased and the randomness is improved. At the same time, by defining an irrational number in the program, we succeeded in generating a pseudo-random sequence with a truly infinite period.

Keywords ---- random number generator, non-periodic, ergodic theory, Haskell

1 Introduction

An **Ergodic** pseudo-random number generator(Ergodic PRNG) produces a non-periodic sequence of numbers.

Most of mathematical pseudo-random numbers have a period. However, it is possible to create a sequence of pseudo-random numbers without a period, which requires an infinite number of internal states. The way in which the internal state grows in terms of data could easily make the period infinite, but this would depend on the upper limit of the RAM of machine, which is effectively finite and impractical.

Therefore, it could be possible to solve this problem by making the internal structure mathematically infinite within a finite range. In order to make the internal state mathematically infinite, we have an irrational number as a state in a finite range and use its ergodic property.

Since the Ergodic PRNG has no period, it transcends the long period of the Mersenne Twister [7] (period: $2^{19937} - 1$).

^{*}Fourth Year Student, Course of Information, Faculty of Business Administration, Matsuyama University

2 Theory

Definition 1. Let l_x be a maximum number of x-axis, l_y be a maximum number of y-axis, the range of *seed* is the semi-closed interval $[0, l_y)$, then define a pseudo-random number sequence E_n as follows:

$$E_1 = seed \tag{2.0.1}$$

$$E_{n+1} = (E_n + l_x) \mod l_y \text{ for } n = 1, 2, 3, ...$$
 (2.0.2)

2.1 Proof

We prove in this subsection that the pseudo-random number sequence $E_n(2.0.1)$ has no period. Let $m, n \in \mathbb{N}$ with $m \neq 0$ and $n \neq 0$. Let $\varphi \in \mathbb{R} \setminus \mathbb{Q}$.

Theorem 1. $E_n(2.0.1)$ has no period, if l_x / l_y is irrational.

To prove this theorem, prove follows lemma when $l_x = \varphi$ and $l_y = 1$ without loss of generality.

Lemma 2. There are no $m \in \mathbb{N}$ and $n \in \mathbb{N}$ such that

$$\exists (m\varphi, n) \in \{(x, x) \in \mathbb{R} \times \mathbb{R}\}, \text{ exept for } (m, n) = (0, 0)$$

$$(2.1.1)$$

Proof. To prove it, assume that there exist $(m,n) \in \mathbb{N} \times \mathbb{N}$ such that $(m\varphi,n) \in \{(x,x) \in \mathbb{R} \times \mathbb{R}\}$

Substitute $(m\varphi, n)$ into (x, x).

$$\begin{array}{rcl} n & = & m\varphi \\ \frac{n}{m} & = & \varphi, \; sincem \neq 0 \end{array}$$

On the other hand, we know $\frac{n}{m} \in \mathbb{Q}$ in spite of $\varphi \in \mathbb{R} \setminus \mathbb{Q}$. Our argument caused, a contradiction.

Therefore, the initial assumption (2.1.1) must be false, which is our desired conclusion. $\hfill \Box$

2.2 Geometrical Bouncing

To make Ergodic PRNGs more randomise, we use value bouncing process. Geometrically, when a point starts moving at an angle of $\frac{\pi}{4}$ radian and reaches $x = 0, l_x$ or $y = 0, l_y$, it makes a billiard-like reversal. In other words, this pseudo-random sequence starts from the origin in a rectangle with side lengths l_x and l_y , respectively, at an angle of $\frac{\pi}{4}$ radian, and plots the coordinates (x, y) of the point at which y moves a distance of $l_y\sqrt{2}$ while continuously bouncing like a billiard ball. This bounce process is equivalent to the torus construction of the graph, and the infinite period is preserved.

The gradual formula of the pseudo-random number sequence E_n with the bounce process added is as follows:

$$\begin{cases} seed, \\ x \text{ shall not bounce} \end{cases} \quad \text{for } n = 0 \tag{2.2.1}$$

$$\begin{aligned}
 E_n + l_x) \mod l_y, & \qquad \begin{cases} \text{for } x \text{ does not bounced,} \\
 x \text{ shall not bounce} & \qquad \\ and & \left| \frac{E_n + l_x}{l_y} \right| \text{ is even.}
 \end{aligned}$$
(2.2.2)

$$E_{n+1} = \begin{cases} l_y - \{(E_n + l_x) \mod l_y\}, \\ x \text{ shall bounce} \end{cases} \text{ for } x \text{ does not bounced,} \\ \text{and } \left|\frac{E_n + l_x}{l_y}\right| \text{ is odd.} \end{cases}$$
(2.2.3)

$$\begin{pmatrix} (-E_n + l_x) \mod l_y, \\ x \text{ shall not bounce} \end{pmatrix} \begin{cases} \text{for } x \text{ bounced}, \\ \text{and } \left| \frac{-E_n + l_x}{l_x} \right| \text{ is even.} \end{cases}$$
 (2.2.4)

$$\begin{cases} l_y - \{(E_n + l_x)\} \{ \mod l_y, \\ x \text{ shall bounce} \end{cases} \begin{cases} \text{for } x \text{ bounced,} \\ \text{and } \left\lfloor \frac{-E_n + l_x}{l_y} \right\rfloor \text{ is odd.} \end{cases}$$
(2.2.5)

3 Application to Ergodic PRNG

From now on, based on the above Theorem 1, we will actually apply it to the algorithm the pseudo-random number generator. The rest of the definition is based on Haskell[5] and Backus-Naur form[1].

3.1 Why do we do in Haskell

 (E_r)

Haskell is a general-purpose, statically typed, purely functional programming language with type inference and lazy evaluation[5].

3.2 Irrational Expression Type

In Haskell, it is easy to build new data structure. In order to implement Ergodic PRNG, we first implement an **Irrational Expression** type in our code. Let an Irrational Expression be:

$$a + b\varphi. \tag{3.2.1}$$

Where $a, b \in \mathbb{Q}$ and $\varphi \in \mathbb{R} \setminus \mathbb{Q}$. First, we define a new data type in Backus-Naur form.

```
\begin{array}{rcl} < digit > & ::= & (0|1|2|3|4|5|6|7|8|9) \\ < digit > & ::= & < digit > \\ & & | & < digit > < digit > \\ < rational > & ::= & < digits > \% < digits > \\ < exp > & ::= & < rational > + < rational > \varphi \end{array}
```

Implementation in Haskell is showed as below:

```
1 data Irrational = Irrational Rational -- ^ Rational term of a
2 Rational -- ^ Rational term of b
```

```
deriving ( Eq )
3
4
  instance Show Irrational where
\mathbf{5}
        ... -- Complete Code is contained in Appendix A
6
7
  instance Num Irrational where
8
       ... -- Complete Code is contained in Appendix A
9
10
  toFloatingIr :: Floating a
11
                 ⇒ Irrational
12
                 -> a
13
   toFloatingIr = fromRational . toRationalIr
14
15
                                    :: Irrational
   toRationalIr
16
                                    -> Rational
17
  toRationalIr (Irrational a b) = a + (toRational b) * phi
18
19
  instance Ord Irrational where
^{20}
       ... -- Complete Code is contained in Appendix A
^{21}
```

Note that in Haskell, the type **Integer** means arbitrary-precision integers and the type **Rational** means rational numbers contains a pair of **Integers**. It is important to realize truly non-periodic pseudo-random number generators.

3.3 Generator State Type

Next, we define a type to represent the state of the pseudo-random number generator. Since Ergodic PRNGs perform bounce, **Generator State** type must contain a boolean type representing the state of the bounce in addition to the Irrational Expression type. The definition in Backus-Naur form is expressed as follows:

Implementation using Haskell is shown as below:

```
data Ergodic = Ergodic Irrational
1
                           Bool
2
                           deriving ( Eq )
3
4
  instance Show Ergodic where
5
     show (Ergodic i True ) = show i ++ ", Not bounced"
6
     show (Ergodic i False) = show i ++ ", Bounced"
7
8
  instance RandomGen Ergodic where
9
       genWord32 gen@(Ergodic seed _) = ( mapIntIr False
10
11
                                                       32
12
                                                       seed
13
                                           , next
                                                       gen )
14
  mapIntIr
                   :: Integral a
15
```

```
-- ^ Is signed
                      ⇒ Bool
16
                                        -- ^ Numbers of bits
                      -> Int
17
                      -> Irrational
18
                      -> a
19
   mapIntIr s i r = floor ((toFloatingIr r) * (mb s i))
20
^{21}
                   :: Floating a
   mb
22
                   ⇒ Bool -- ^ Is signed
-> Int -- ^ Numbers of bits
23
24
                   -> a
25
                      fromIntegral (maxBound :: Int8)
fromIntegral (maxBound :: Int16)
   mb True
              8
                   =
26
   mb True
              16
                   =
27
                       fromIntegral (maxBound :: Int32)
fromIntegral (maxBound :: Int64)
   mb True
              32
                   =
^{28}
   mb True
              64
                   =
29
                       fromIntegral (maxBound :: Word8)
30
   mb False 8
                   =
                       fromIntegral (maxBound :: Word16)
   mb False 16 =
^{31}
                       fromIntegral (maxBound :: Word32)
   mb False 32
32
                   =
                       fromIntegral (maxBound :: Word64)
33 mb False 64 =
<sup>34</sup> mb False 256 = fromIntegral (maxBound :: Word256)
```

To get the next value of E_n , define a function as follows:

```
:: Irrational -> Irrational -> Irrational
  divIr
1
  divIr a b -- Complete Code is contained in Appendix A
2
3
             :: Irrational -> Irrational -> Irrational
4
  modIr
  modIr a b -- Complete Code is contained in Appendix A
5
6
          :: Irrational -> Bool
  evenIr
7
   evenIr r = -- Complete Code is contained in Appendix A
8
9
   oddIr
         :: Irrational -> Bool
10
   oddIr r = -- Complete Code is contained in Appendix A
11
12
            :: Ergodic -> Ergodic
  next
13
  next gen = if bounce
14
                   then Ergodic ns
                                           True
15
                   else Ergodic (ly - ns) False
16
                where Ergodic s b = gen
17
                       ln = lx
18
                       (ns, bounce)
19
                          = if b
20
                                 then ( modIr (s + ln)
^{21}
22
                                               ly
                                      , evenIr (divIr (s + ln)
23
                                                       ly))
^{24}
                                 else ( modIr (ly - s + ln)
25
                                              ly
26
                                      , oddIr (divIr (ly - s + ln)
27
                                                       ly))
28
```

3.4 Initializing generator

Next, we consider the initialization of the pseudo-random number generator. In the definition (2.2.1), the seed is directly divided by the maximum value of 64bit signed integer, but there is a problem with this. That is, it generates almost the same sequence of random numbers when the seed values are close. For this reason, Ergodic PRNGs use Xorshift[6] to randomise the seed as follows:

$$E_1 = \frac{Xorshift(seed)}{2^{63} - 1}$$
(3.4.1)

In Haskell:

1

2

3

4

5

```
mkErgoGen :: Int -- ^ Seed
-> Irrational -- ^ Initialised generator
mkErgoGen seed = Irrational ((xorshift seed)
% maxBound))
0
```

4 Choose the optimal combination of parameters

So far, we have considered the part of the Ergodic PRNG algorithm that is related to the computational process. We now consider the actual parameters used in the calculation.

In Ergodic PRNG, three parameters, l_x that the maximum value of x-axis, l_y that the maximum value of y-axis and φ are required. These parameters are defined as constants in advance.

4.1 The maximum value of *y*-axis

First of all, consider the maximum value of y-axis l_y . where l_y is the maximum possible value of the y-axis in the graph. It must be $l_y \in \mathbb{R}$ and $l_y > 0$. For simplicity, we assume $l_y = 1$.

4.2 φ and the maximum value of x-axis

For more randomness, the choice of φ and the maximum value of x-axis l_x is crucial.

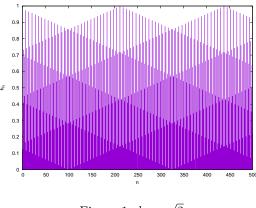


Figure 1: $l_x = \sqrt{2}$

Figure 1 plots the output results for the case $l_x = \sqrt{2}$. As can be seen from this graph, the outer period is easily seen. The more the graph looks like a gradient, the higher the randomness of the pseudo-random number sequence. So, E_n with $l_x = \sqrt{2}$ has low randomness.

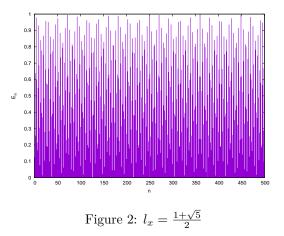


Figure 2 plots the output of l_x as the golden ratio $\left(\frac{1+\sqrt{5}}{2}\right)$. This is more random than the previous Figure 1.

Pick an Irrational Number 4.3

From Fermat's Last Theorem[9], the number case n = 3 is expressed as below:

$$\nexists x, y \in \mathbb{Q} \text{ s.t. } x^3 + y^3 = 1 \tag{4.3.1}$$

except for the trivial case (x, y) = (0, 1), (1, 0)Therefore, the graph of $x^3 + y^3 = 1$ has no rational solutions except (1, 0) and (0, 1), and all points except (1, 0) and (0, 1) through which the graph passes are irrational numbers. Moreover, the cubic roots do not circulate in the continuous fraction expansion. In view of the above, it is thought that the cubic root of φ would give a better result.

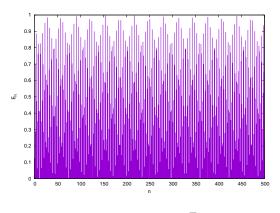


Figure 3: $l_x = \sqrt[3]{4}$

Figure 3 shows a plot of the output as $l_x = \sqrt[3]{4}$. Although the pattern is finer than in Figure 1, it is more linear than that in Figure 2. This suggests that the rational term should also be a non-zero number.

The outer period is determined by the denominator of the approximation by rational numbers after the decimal point. Therefore, it is necessary to find a value which is as difficult to approximate by rational numbers as possible. To find the best value, we plot $0 \leq \frac{m}{n} \leq 1$ with $m \in \{x \in \mathbb{N} | x < n\}$ and $n \in \mathbb{N}$.

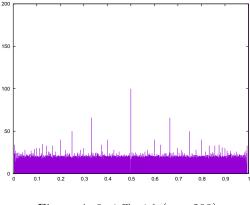


Figure 4: $0 \le \frac{m}{n} \le 1$ (n = 200)

Figure 4 is a graph showing the frequency of occurrence for the case n = 200. From the graph, we can see that there is a hole around 0.64.

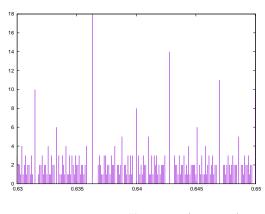


Figure 5: $0.63 \le \frac{m}{n} \le 0.65$ (n = 200)

Figure 5 is an enlargement of Figure 4 in the range $0.63 \le \frac{m}{n} \le 0.65$ for better clarity. From the above result, we generate a sequence of pseudo-random numbers with

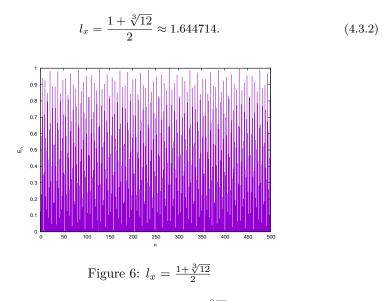
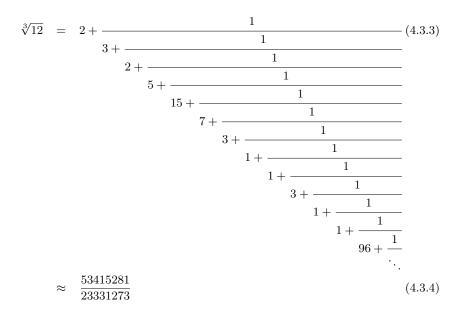


Figure 6 shows a plot of the output as $l_x = \frac{1+\sqrt[3]{12}}{2}$. This is an optimal result because the graph looks the most gradated among the ones we tried. Based on the above results, we set $\varphi = \sqrt[3]{12}$ and $l_x = \frac{1+\sqrt[3]{12}}{2}$. In order to obtain

fast and accurate results, we approximate φ by using the continued fraction expansion.



4.4 Definition in Haskell

The parameters used in Ergodic PRNG to generate random numbers are as follows:

$$y = 1$$
 (4.4.1)
53415281 (4.4.2)

$$\rho \approx \frac{33413281}{23331273} \tag{4.4.2}$$

$$l_x = \frac{1+\varphi}{2} \tag{4.4.3}$$

We now define these parameters as constants in Haskell as follows:

l

```
1 ly :: Irrational

2 ly = Irrational 1 0 -- 1 + 0\varphi

3 phi :: Rational

5 phi = 53415281 % 23331273 -- \sqrt[3]{12} \approx \frac{53415281}{23331273}

6 lx :: Irrational

8 lx = Irrational (1 % 2) (1 % 2) -- \frac{1}{2} + \frac{\varphi}{2}
```

This completes the implementation of the Ergodic PRNG. The actual sequence of pseudo-random numbers generated according to this algorithm is shown in Appendix B.

5 Benchmarks

We now estimate benchmark tests on the performance of Ergodic PRNG. The benchmark tests are performed on two aspects: statistical randomness and its generation speed.

5.1 Randomness test

For the tests, we used the Python implementation of NIST 800-22 test suite[2][4]. The following Table 1 shows the results of testing a pseudo-random number sequence generated by Ergodic PRNG using NIST 800-22.

Table 1: Test result of NIST 800-22					
Test name	Value	Result			
monobit test	0.7286253077289306	PASS			
frequency within block test	0.12149948119993939	PASS			
runs test	0.9819908995076131	PASS			
longest run ones	0.11532499498977329	PASS			
in a block test	0.11002499490911029				
binary matrix rank test	0	FAIL			
dft test	0	FAIL			
non overlapping	-0.8446845109937807	FAIL			
template matching test	-0.0440045105557007				
overlapping template	0.05142128621666958	PASS			
matching test	0.05142120021000550	1 100			
maurers universal test	1.3011979903245765e-70	FAIL			
linear complexity test	0.006549021060733038	FAIL			
serial test	0.9017749891453991	PASS			
approximate entropy test	0.9968778600697635	PASS			
cumulative sums test	0.9821000522967793	PASS			
random excursion test	0.2778791285352132	PASS			
random excursion	0.2001052592727655	PASS			
variant test	0.2001032392727033	TADD			

Table 1: Test result of NIST 800-22

The above results show that its randomness is not perfect although the Ergodic PRNG passes more than half of the tests.

5.2 Generation speed

The computational environment used for the speed measurements is shown in Table 2 below.

Table 2: Environment				
OS	Red Hat Enterprise Linux release 8.5 (Ootpa)			
CPU	Intel Core i7 4790K			
RAM	32GB			
Haskell Stack	Version 2.7.3			
Stackage	LTS Haskell 18.21			
Compiler	GHC 8.10.7			

As a measure of speed evaluation, we compare the generation speed of Xorshift and RDRAND with that of Ergodic PRNG. RDRAND is an instruction for returning random numbers from the Intel on-chip hardware random number generator which has been seeded by an on-chip entropy source.

Table 3 shows the generation speed results of the three algorithms for the case n = 1000000. The standard time command of Red Hat Enterprise Linux was used for

the speed measurement.

Table 3: Time and speed				
Algorithm	Time	Speed(bps)		
Ergodic PRNG	1:09.75	458,781.3620		
Xorshift	0:02.26	14,159,292		
RDRAND	0:03.38	9,467,455.621		

m 11 9 m·

As can be seen from the above results, the speed of Ergodic PRNG is more than 20 times faster than RDRAND and more than 30 times faster than Xorshift. This is probably due to the large data structure and the large number of arithmetic operations including division. Speeding up the generation process is one of the remaining challenges of Ergodic PRNG.

6 Summary

Ergodic PRNG is a periodless mathematical pseudo-random number generator. While it has the property of no period, it is inferior to RDRAND and Xorshift in terms of randomness and generation speed. On the other hand, it has a merit that it is possible to obtain a sequence of random numbers of arbitrary precision from the same algorithm because it is internally an irrational number.

Although the generation speed and the randomness are major issues to be solved in the future, there is a way to solve the randomness problem by using the Ergodic PRNG as a seed only, instead of using it as a pseudo-random sequence. By using the output of Ergodic PRNG as a seed, it is possible to generate a pseudo-random number sequence by another pseudo-random number generator, which eliminates the period of the existing pseudo-random number generator.

References

- [1] John W. Backus, Friedrich L. Bauer, Julien Green, Charles Katz, John McCarthy, Peter Naur, Alan J. Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois, Joseph Henry Wegstein, Adriaan van Wijngaarden, and Michael Woodger. "Report on the Algorithmic Language ALGOL 60". Numerische Mathematik, 2(1):106–136, 1960.
- [2] Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel, David L. Banks, Nathanael Alan Heckert, James F. Dray, and San Vo. "SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications". Technical report, Gaithersburg, MD, USA, 2010.
- [3] Yuya DAN. "A Theoretical and Practical Study for Monte Carlo Simulations with Quantum Random Numbers," in Japanese. MATSUYAMA UNIVERSITY REVIEW, 27(4-2):121–152, 2015.
- [4] dj-on-github. sp800_22_tests. https://github.com/dj-on-github/sp800_22_tests.
- [5] Simon Peyton Jones. "Haskell 98 Language and Libraries: The Revised Report". Cambridge University Press, 2003.
- [6] George Marsaglia et al. "Xorshift RNGs". Journal of Statistical Software, 8(14):1– 6, 2003.
- [7] Makoto Matsumoto and Takuji Nishimura. "Mersenne Twister: A 623dimensionally equidistributed uniform pseudorandom number generator". ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.
- [8] Hiroshi Sugita. "Pseudo-random number generation by irrational number rotation". 915:146–156, 1995.
- [9] Andrew Wiles. "Modular elliptic curves and Fermat's Last Theorem". Annals of mathematics, 141(3):443-551, 1995.

Appendix A Complete Code in Haskell

In this part, specific operations that are not mathematically relevant in nature are omitted from the source code. The complete Haskell code is written as follows:

```
module ErgodicPRNG where
1
2
  import System.Random ( RandomGen ()
3
                           genWord32 )
4
  import Data.Int
                         (
                           Int8
5
                           Int16
6
                         ,
                           Int32
7
                           Int64 )
8
  import Data.Word
                         (
                           Word8
9
                           Word16
10
11
                           Word32
                           Word64 )
12
  import Data.WideWord (
                           Word256)
13
  import Data.Ratio
                         (
                           (%))
14
   import GHC.Real
                         ( Ratio ( (:%) ) )
15
16
   import Data.Function ((δ))
17
   import Data.Bits
                         ( shiftL
18
                         , shiftR
19
                         , xor )
20
^{21}
  ^{22}
23
                                 deriving ( Eq )
^{24}
25
  instance Show Irrational where
26
       show (Irrational 0 0) = "0"
27
       show (Irrational 0 b) = show b ++ " * phi"
^{28}
       show (Irrational a 0) = show a
29
       show (Irrational a b) = show a ++ " + " ++
30
                                show b ++ " * phi"
31
32
  instance Num Irrational where
33
       (+) (Irrational a b) -- a + b\varphi + c + d\varphi
34
           (Irrational c d) = Irrational (a + c)
35
                                           (b + d)
36
37
       signum r
                  r' > 0
                                1
                             =
38
                   r' < 0
                             =
                               -1
39
                  otherwise = 0
40
                   where r' = toRationalIr r
41
42
       negate (Irrational a b) = Irrational (-a) (-b)
43
44
       abs r = r * signum r
^{45}
46
       fromInteger a = Irrational (a % 1) 0
47
^{48}
```

```
toFloatingIr :: Floating a
49
                 ⇒ Irrational
50
                 -> a
51
   toFloatingIr = fromRational . toRationalIr
52
53
   toRationalIr
                                     :: Irrational
54
                                    -> Rational
55
   toRationalIr (Irrational a b) = a + (toRational b) * phi
56
57
   instance Ord Irrational where
58
       compare (Irrational a b)
59
                (Irrational c d)
                                      n = 0
                                                 = EQ
60
                                      n > 0
                                                 = GT
61
                                      otherwise = LT
62
                                      where n = (a - c) + 
63
                                                   ((b - d) * phi)
64
65
   divIr
             :: Irrational -> Irrational -> Irrational
66
   divIr a b
                a >= b = 1 + divIr (a - b) b
67
                a < b = 0
68
69
             :: Irrational -> Irrational -> Irrational
  modIr
70
   modIr a b
                 a = b = Irrational 0 0
71
                 a > b = modIr (a - b) b
72
                 a < b = a
73
74
75 evenIr :: Irrational -> Bool
76 evenIr r = even (n div d)
                where n :% d = toRationalIr r
77
78
  oddIr :: Irrational -> Bool
79
   oddIr r = not (evenIr r)
80
81
   phi :: Rational
^{82}
   phi = 53415281 % 23331273 -- \sqrt[3]{12} \approx \frac{53415281}{23331273}
83
84
   ly :: Irrational
85
   ly = Irrational 1 0 -- 1 + 0\varphi
86
87
   lx :: Irrational
88
   lx = Irrational (1 % 2) (1 % 2) -\frac{1}{2} + \frac{\varphi}{2}
89
90
   data Ergodic = Ergodic Irrational
91
                             Bool
92
                             deriving ( Eq )
93
94
   instance Show Ergodic where
95
     show (Ergodic i True ) = show i ++ ", Not bounced"
96
     show (Ergodic i False) = show i ++ ", Bounced"
97
98
   instance RandomGen Ergodic where
99
       genWord32 gen@(Ergodic seed _) = ( mapIntIr False
100
                                                        32
101
```

```
seed
102
                                              , next
                                                          gen )
103
104
   mapIntIr
                    :: Integral a
105
                                    -- ^ Is signed
                    ⇒ Bool
106
                                     -- ^ Numbers of bits
                    -> Int
107
                    -> Irrational
108
                    -> a
109
   mapIntIr s i r = floor ((toFloatingIr r) * (mb s i))
110
111
                  :: Floating a
   mb
112
                  ⇒ Bool -- ^ Is signed
-> Int -- ^ Numbers of bits
113
114
                  -> a
115
                  = fromIntegral (maxBound :: Int8)
             8
   mb True
116
                 = fromIntegral (maxBound :: Int16)
   mb True
             16
117
                  = fromIntegral (maxBound :: Int32)
   mb True
            32
118
                  = fromIntegral (maxBound :: Int64)
   mb True 64
119
                     fromIntegral (maxBound :: Word8)
   mb False 8
                  =
120
   mb False 16 =
                     fromIntegral (maxBound :: Word16)
121
   mb False 32 =
                     fromIntegral (maxBound :: Word32)
122
   mb False 64 = fromIntegral (maxBound :: Word64)
123
   mb False 256 =
                     fromIntegral (maxBound :: Word256)
124
125
   xorshift :: Int -> Int
126
   xorshift s = s & (v \rightarrow (v \hat{s}hift 23) \hat{x}or v)
127
                     & (\v -> (v `shiftR` 13) `xor` v)
& (\v -> (v `shiftL` 58) `xor` v)
128
129
130
              :: Ergodic -> Ergodic
   next
131
   next gen = if bounce
132
                    then Ergodic ns
                                              True
133
                    else Ergodic (ly - ns) False
134
                  where Ergodic s b = gen
135
                         ln = lx
136
                         (ns, bounce)
137
                             = if b
138
                                   then ( modIr (s + ln)
139
                                                   ly
140
                                         , evenIr (divIr (s + ln)
141
                                                           ly) )
142
                                   else ( modIr (ly - s + ln)
143
                                                  ly
144
                                         , oddIr (divIr (ly - s + ln)
145
                                                           ly) )
146
147
                                    -- ^ Seed
   mkErgoGen
                    :: Int
148
                    -> Irrational -- ^ Initialised generator
149
   mkErgoGen seed = Irrational (toRational ((xorshift seed)
150
                                                  % maxBound))
151
                                    0
152
```

Appendix B A List of Generated Random Numbers

The table of random numbers generated by the Ergodic PRNG is shown below. Note that seed = 4 and the range is the semi-closed interval [0,1).

$n \le 50$	Value	$n \le 100$	Value	$n \le 150$	Value
1	0.12500000	51	0.36071213	101	0.59642426
2	0.23028576	52	0.00543	101	0.24113850
3	0.58557151	53	0.34985939	102	0.11414726
4	0.94085727	54	0.70514514	100	0.46943302
5	0.70385697	55	0.93956910	101	0.82471877
6	0.34857121	56	0.58428334	100	0.81999547
7	0.00671	57	0.22899758	107	0.46470971
8	0.36200030	58	0.12628817	107	0.10942395
9	0.71728606	59	0.48157393	109	0.24586180
10	0.92742818	60	0.83685969	110	0.60114756
11	0.57214243	61	0.80785455	110	0.95643332
12	0.21685667	62	0.45256880	112	0.68828092
13	0.13842909	63	0.0973	112	0.33299517
10	0.49371485	64	0.25800272	110	0.0223
15	0.84900060	65	0.61328848	114	0.37757635
16	0.79571364	66	0.96857423	116	0.73286211
10	0.44042788	67	0.30037423 0.67614001	110	0.91185214
18	0.0851	68	0.32085425	111	0.55656638
10	0.27014363	69	0.0344	110	0.20128062
20	0.62542939	70	0.38971726	110	0.15400514
20	0.98071515	71	0.74500302	120	0.50929089
21	0.66399909	71	0.14900302 0.89971122	121	0.86457665
23	0.30871334	73	0.54442546	122	0.78013759
23	0.0466	74	0.18913971	123	0.42485183
24	0.40185818	74	0.16513571 0.16614605	124	0.0696
20	0.75714394	76	0.52143181	125	0.28571968
20	0.88757031	77	0.87671757	120	0.64100544
28	0.53228455	78	0.76799668	121	0.99629120
20	0.03228433 0.17699879	79	0.41271092	120	0.64842305
30	0.17828697	80	0.0574	130	0.29313729
31	0.53357272	81	0.29786060	130	0.23313723
32	0.88885848	82	0.23100000 0.65314635	131	0.41743423
33	0.75585576	83	0.99156789	132	0.77271998
34	0.400570	84	0.63628213	133	0.87199426
35	0.0453	85	0.03023213 0.28099637	134	0.51670850
36	0.0455 0.31000151	86	0.20039037	135	0.16142274
37	0.66528727	87	0.42957514	130	0.19386301
38	0.97942697	88	0.78486090	137	0.54914877
39	0.62414122	89	0.16480030 0.85985334	130	0.90443453
40	0.02414122 0.26885546	90	0.50456759	133	0.74027971
40	0.2000340	91	0.14928183	140	0.38499396
41	0.0004 0.44171606	92	0.20600393	141 142	0.0297
43	0.79700181	93	0.20000333 0.56128969	142	0.32557756
40	0.84771243	94	0.91657544	145	0.68086331
45	0.49242667	95	0.31057544 0.72813880	144	0.96385093
40	0.13714091	96	0.37285304	145	0.60856517
40	0.13714031 0.21814484	90	0.0176	140	0.00330317 0.25327941
47	0.21814484 0.57343060	98	0.33771847	147	0.10200634
40	0.97343000 0.92871636	99	0.69300423	148	0.10200034 0.45729210
49 50	0.92871030 0.71599789	100	0.09300423 0.95171001	149	0.43729210 0.81257786
0	0.11099189	100	0.90171001	130	0.01201100

$n \le 200$	Value	n < 250	Value	n < 300	Value
1	0.83213638				
151	0.83213038 0.47685063	201	0.93215149	251 252	0.69643936
152	0.47685063 0.12156487	202	$\begin{array}{r} 0.71256275 \\ 0.3572770 \end{array}$	-	0.94827488
153 154	0.12150487 0.23372089	203 204	0.3572770	253 254	$\begin{array}{r} 0.59298912 \\ 0.23770337 \end{array}$
154	0.23372089 0.58900665				
		205	$\begin{array}{r} 0.35329452 \\ 0.70858028 \end{array}$	255 256	0.11758239
156	0.94429240	206 207			0.47286815
157	$\frac{0.70042184}{0.34513608}$	207	$\frac{0.93613397}{0.58084821}$	257 258	$\frac{0.82815391}{0.81656034}$
158			0.38084821 0.22556245	258	0.81050054 0.46127458
159	0.0101	209			
160	0.36543543	210	0.12972331 0.48500906	260	0.10598882
161	0.72072119	211		261	0.24929694
162	0.92399305	212	0.84029482	262	0.60458269
163	0.56870729	213	0.80441942	263	0.95986845
164	0.21342154	214	0.44913366	264	0.68484579
165	0.14186422	215	0.0938	265	0.32956003
166	0.49714998	216	0.26143785	266	0.0257
167	0.85243574	217	0.61672361	267	0.38101148
168	0.79227851	218	0.97200937	268	0.73629724
169	0.43699275	219	0.67270488	269	0.9084170
170	0.0817	220	0.31741912	270	0.55313125
171	0.27357877	221	0.0379	271	0.19784549
172	0.62886452	222	0.39315240	272	0.15744027
173	0.98415028	223	0.74843815	273	0.51272603
174	0.66056396	224	0.89627609	274	0.86801178
175	0.30527820	225	0.54099033	275	0.77670246
176	0.05	226	0.18570457	276	0.42141670
177	0.40529331	227	0.16958118	277	0.0661
178	0.76057907	228	0.52486694	278	0.28915481
179	0.88413517	229	0.88015270	279	0.64444057
180	0.52884942	230	0.76456154	280	0.99972633
181	0.17356366	231	0.40927579	281	0.64498791
182	0.18172210	232	0.054	282	0.28970216
183	0.53700786	233	0.30129573	283	0.0656
184	0.89229361	234	0.65658149	284	0.42086936
185	0.75242063	235	0.98813276	285	0.77615511
186	0.39713487	236 237	0.6328470	286	0.86855913
187	0.0418		0.27756124	287	0.51327337
188	0.31343664	238	0.0777	288	0.15798761
189	0.66872240	239	0.43301027	289	0.19729814
190	0.97599184	240	0.78829603	290	0.55258390
191	0.62070609	241	0.85641821	291	0.90786966
192	0.26542033	242	0.50113246	292	0.73684458
193	0.0899	243	0.14584670	293	0.38155883
194	0.44515119	244	0.20943906	294	0.0263
195	0.80043694	245	0.56472482	295	0.32901269
196	0.84427730	246	0.92001057	296	0.68429845
197	0.48899154	247	0.72470367	297	0.96041580
198	0.13370578	248	0.36941791	298	0.60513004
199	0.22157997	249	0.0141	299	0.24984428
200	0.57686573	250	0.34115360	300	0.10544148