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Abstract

Mathematical pseudo-random number generators in general have a pe-
riod, and the length of the period is a measure of the spec of the pseudo-
random number generator. The accuracy of Monte Carlo methods de-
pends on the period of the pseudo-random numbers[3], but it is common
to use physical random numbers to obtain non-periodic random numbers.

On the other hand, physical random numbers have a high threshold for
introduction because they requires the preparation of dedicated equipment
or the use of functions that depend on the OS or CPU architecture.

In the previous work by Hiroshi Sugita[8], a random number generator
using irrational rotation can generate an infinite period pseudo-random
number sequence. However, there is a problem that this random number
generator fails to pass some randomness tests. In addition, this random
number generator is operated by rational numbers which strictly approx-
imate irrational numbers, and its period is finite in practice. Therefore,
by using the ergodic property and adding the bounce operation to the se-
quence generation, the number of tests that can be passed is increased and
the randomness is improved. At the same time, by defining an irrational
number in the program, we succeeded in generating a pseudo-random
sequence with a truly infinite period.

Keywords— random number generator, non-periodic, ergodic theory, Haskell

1 Introduction
An Ergodic pseudo-random number generator(Ergodic PRNG) produces a non-periodic
sequence of numbers.

Most of mathematical pseudo-random numbers have a period. However, it is pos-
sible to create a sequence of pseudo-random numbers without a period, which requires
an infinite number of internal states. The way in which the internal state grows in
terms of data could easily make the period infinite, but this would depend on the
upper limit of the RAM of machine, which is effectively finite and impractical.

Therefore, it could be possible to solve this problem by making the internal struc-
ture mathematically infinite within a finite range. In order to make the internal state
mathematically infinite, we have an irrational number as a state in a finite range and
use its ergodic property.

Since the Ergodic PRNG has no period, it transcends the long period of the
Mersenne Twister[7](period: 219937 − 1).
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suyama University
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2 Theory
Definition 1. Let lx be a maximum number of x-axis, ly be a maximum number of
y-axis, the range of seed is the semi-closed interval [0,ly), then define a pseudo-random
number sequence En as follows:

E1 = seed (2.0.1)
En+1 = (En + lx) mod ly for n = 1, 2, 3, ... (2.0.2)

2.1 Proof
We prove in this subsection that the pseudo-random number sequence En(2.0.1) has
no period. Let m,n ∈ N with m ̸= 0 and n ̸= 0. Let φ ∈ R \Q.

Theorem 1. En(2.0.1) has no period, if lx / ly is irrational.

To prove this theorem, prove follows lemma when lx = φ and ly = 1 without loss
of generality.

Lemma 2. There are no m ∈ N and n ∈ N such that

∃(mφ,n) ∈ {(x, x) ∈ R× R}, exept for (m,n) = (0, 0) (2.1.1)

Proof. To prove it, assume that there exist (m,n) ∈ N × N such that (mφ,n) ∈
{(x, x) ∈ R× R}

Substitute (mφ,n) into (x, x).

n = mφ
n

m
= φ, sincem ̸= 0

On the other hand, we know n
m

∈ Q in spite of φ ∈ R \Q.
Our argument caused, a contradiction.
Therefore, the initial assumption (2.1.1) must be false, which is our desired con-

clusion.

2.2 Geometrical Bouncing
To make Ergodic PRNGs more randomise, we use value bouncing process. Geomet-
rically, when a point starts moving at an angle of π

4
radian and reaches x = 0, lx or

y = 0, ly, it makes a billiard-like reversal. In other words, this pseudo-random sequence
starts from the origin in a rectangle with side lengths lx and ly, respectively, at an
angle of π

4
radian, and plots the coordinates (x, y) of the point at which y moves a dis-

tance of ly
√
2 while continuously bouncing like a billiard ball. This bounce process is

equivalent to the torus construction of the graph, and the infinite period is preserved.
The gradual formula of the pseudo-random number sequence En with the bounce

process added is as follows:

2



En+1 =



seed,

x shall not bounce
forn = 0

(En + lx) mod ly,

x shall not bounce


for x does not bounced,

and
⌊
En + lx

ly

⌋
is even.

ly − {(En + lx) mod ly},
x shall bounce


for x does not bounced,

and
⌊
En + lx

ly

⌋
is odd.

(−En + lx) mod ly,

x shall not bounce


for x bounced,

and
⌊
−En + lx

ly

⌋
is even.

ly − {(En + lx){modly,
x shall bounce


for x bounced,

and
⌊
−En + lx

ly

⌋
is odd.

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

3 Application to Ergodic PRNG
From now on, based on the above Theorem 1, we will actually apply it to the algorithm
the pseudo-random number generator. The rest of the definition is based on Haskell[5]
and Backus-Naur form[1].

3.1 Why do we do in Haskell
Haskell is a general-purpose, statically typed, purely functional programming language
with type inference and lazy evaluation[5].

3.2 Irrational Expression Type
In Haskell, it is easy to build new data structure. In order to implement Ergodic
PRNG, we first implement an Irrational Expression type in our code. Let an
Irrational Expression be:

a+ bφ. (3.2.1)
Where a, b ∈ Q and φ ∈ R \Q.
First, we define a new data type in Backus-Naur form.

< digit > ::= (0|1|2|3|4|5|6|7|8|9)
< digits > ::= < digit >

| < digit >< digit >

< rational > ::= < digits > % < digits >

< exp > ::= < rational > + < rational > φ

Implementation in Haskell is showed as below:

1 data Irrational = Irrational Rational -- ^ Rational term of a
2 Rational -- ^ Rational term of b
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3 deriving ( Eq )
4

5 instance Show Irrational where
6 FF. -- Complete Code is contained in Appendix A
7

8 instance Num Irrational where
9 FF. -- Complete Code is contained in Appendix A

10

11 toFloatingIr F: Floating a
12 F> Irrational
13 -> a
14 toFloatingIr = fromRational . toRationalIr
15

16 toRationalIr F: Irrational
17 -> Rational
18 toRationalIr (Irrational a b) = a + (toRational b) * phi
19

20 instance Ord Irrational where
21 FF. -- Complete Code is contained in Appendix A

Note that in Haskell, the type Integer means arbitrary-precision integers and the
type Rational means rational numbers contains a pair of Integers. It is important
to realize truly non-periodic pseudo-random number generators.

3.3 Generator State Type
Next, we define a type to represent the state of the pseudo-random number generator.
Since Ergodic PRNGs perform bounce, Generator State type must contain a boolean
type representing the state of the bounce in addition to the Irrational Expression type.
The definition in Backus-Naur form is expressed as follows:

< bool > ::= true

| false

< gen > ::= < exp >,< bool >

Implementation using Haskell is shown as below:

1 data Ergodic = Ergodic Irrational
2 Bool
3 deriving ( Eq )
4

5 instance Show Ergodic where
6 show (Ergodic i True ) = show i F+ ", Not bounced"
7 show (Ergodic i False) = show i F+ ", Bounced"
8

9 instance RandomGen Ergodic where
10 genWord32 gen@(Ergodic seed _) = ( mapIntIr False
11 32
12 seed
13 , next gen )
14

15 mapIntIr F: Integral a
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16 F> Bool -- ^ Is signed
17 -> Int -- ^ Numbers of bits
18 -> Irrational
19 -> a
20 mapIntIr s i r = Floor ((toFloatingIr r) * (mb s i))
21

22 mb F: Floating a
23 F> Bool -- ^ Is signed
24 -> Int -- ^ Numbers of bits
25 -> a
26 mb True 8 = fromIntegral (maxBound F: Int8)
27 mb True 16 = fromIntegral (maxBound F: Int16)
28 mb True 32 = fromIntegral (maxBound F: Int32)
29 mb True 64 = fromIntegral (maxBound F: Int64)
30 mb False 8 = fromIntegral (maxBound F: Word8)
31 mb False 16 = fromIntegral (maxBound F: Word16)
32 mb False 32 = fromIntegral (maxBound F: Word32)
33 mb False 64 = fromIntegral (maxBound F: Word64)
34 mb False 256 = fromIntegral (maxBound F: Word256)

To get the next value of En, define a function as follows:

1 divIr F: Irrational -> Irrational -> Irrational
2 divIr a b -- Complete Code is contained in Appendix A
3

4 modIr F: Irrational -> Irrational -> Irrational
5 modIr a b -- Complete Code is contained in Appendix A
6

7 evenIr F: Irrational -> Bool
8 evenIr r = -- Complete Code is contained in Appendix A
9

10 oddIr F: Irrational -> Bool
11 oddIr r = -- Complete Code is contained in Appendix A
12

13 next F: Ergodic -> Ergodic
14 next gen = if bounce
15 then Ergodic ns True
16 else Ergodic (ly - ns) False
17 where Ergodic s b = gen
18 ln = lx
19 (ns, bounce)
20 = if b
21 then ( modIr (s + ln)
22 ly
23 , evenIr (divIr (s + ln)
24 ly) )
25 else ( modIr (ly - s + ln)
26 ly
27 , oddIr (divIr (ly - s + ln)
28 ly) )
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3.4 Initializing generator
Next, we consider the initialization of the pseudo-random number generator. In the
definition (2.2.1), the seed is directly divided by the maximum value of 64bit signed
integer, but there is a problem with this. That is, it generates almost the same sequence
of random numbers when the seed values are close. For this reason, Ergodic PRNGs
use Xorshift[6] to randomise the seed as follows:

E1 =
Xorshift(seed)

263 − 1
(3.4.1)

In Haskell:

1 mkErgoGen F: Int -- ^ Seed
2 -> Irrational -- ^ Initialised generator
3 mkErgoGen seed = Irrational (toRational ((xorshift seed)
4 % maxBound))
5 0

4 Choose the optimal combination of parame-
ters

So far, we have considered the part of the Ergodic PRNG algorithm that is related
to the computational process. We now consider the actual parameters used in the
calculation.

In Ergodic PRNG, three parameters, lx that the maximum value of x-axis, ly that
the maximum value of y-axis and φ are required. These parameters are defined as
constants in advance.

4.1 The maximum value of y-axis
First of all, consider the maximum value of y-axis ly. where ly is the maximum possible
value of the y-axis in the graph. It must be ly ∈ R and ly > 0. For simplicity, we
assume ly = 1.

4.2 φ and the maximum value of x-axis
For more randomness, the choice of φ and the maximum value of x-axis lx is crucial.
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Figure 1: lx =
√
2

Figure 1 plots the output results for the case lx =
√
2. As can be seen from this

graph, the outer period is easily seen. The more the graph looks like a gradient, the
higher the randomness of the pseudo-random number sequence. So, En with lx =

√
2

has low randomness.
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Figure 2: lx = 1+
√
5

2

Figure 2 plots the output of lx as the golden ratio ( 1+
√
5

2
). This is more random

than the previous Figure 1.

4.3 Pick an Irrational Number
From Fermat’s Last Theorem[9], the number case n = 3 is expressed as below:

∄x, y ∈ Q s.t. x3 + y3 = 1 (4.3.1)
except for the trivial case (x, y) = (0, 1), (1, 0)
Therefore, the graph of x3 + y3 = 1 has no rational solutions except (1, 0) and

(0, 1), and all points except (1, 0) and (0, 1) through which the graph passes are irra-
tional numbers. Moreover, the cubic roots do not circulate in the continuous fraction
expansion. In view of the above, it is thought that the cubic root of φ would give a
better result.
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Figure 3: lx = 3
√
4

Figure 3 shows a plot of the output as lx = 3
√
4. Although the pattern is finer than

in Figure 1, it is more linear than that in Figure 2. This suggests that the rational
term should also be a non-zero number.

The outer period is determined by the denominator of the approximation by ratio-
nal numbers after the decimal point. Therefore, it is necessary to find a value which
is as difficult to approximate by rational numbers as possible. To find the best value,
we plot 0 ≤ m

n
≤ 1 with m ∈ {x ∈ N|x < n} and n ∈ N.
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Figure 4: 0 ≤ m
n ≤ 1 (n = 200)

Figure 4 is a graph showing the frequency of occurrence for the case n = 200.
From the graph, we can see that there is a hole around 0.64.
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Figure 5: 0.63 ≤ m
n ≤ 0.65 (n = 200)

Figure 5 is an enlargement of Figure 4 in the range 0.63 ≤ m
n

≤ 0.65 for better
clarity. From the above result, we generate a sequence of pseudo-random numbers
with

lx =
1 + 3

√
12

2
≈ 1.644714. (4.3.2)
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Figure 6: lx = 1+ 3√12
2

Figure 6 shows a plot of the output as lx = 1+ 3√12
2

. This is an optimal result
because the graph looks the most gradated among the ones we tried.

Based on the above results, we set φ = 3
√
12 and lx = 1+ 3√12

2
. In order to obtain

fast and accurate results, we approximate φ by using the continued fraction expansion.
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3
√
12 = 2 +

1

3 +
1

2 +
1

5 +
1

15 +
1

7 +
1

3 +
1

1 +
1

1 +
1

3 +
1

1 +
1

1 +
1

96 +
1

. . .

(4.3.3)

≈ 53415281

23331273
(4.3.4)

4.4 Definition in Haskell
The parameters used in Ergodic PRNG to generate random numbers are as follows:

ly = 1 (4.4.1)

φ ≈ 53415281

23331273
(4.4.2)

lx =
1 + φ

2
(4.4.3)

We now define these parameters as constants in Haskell as follows:

1 ly F: Irrational
2 ly = Irrational 1 0 -- 1 + 0φ
3

4 phi F: Rational
5 phi = 53415281 % 23331273 -- 3

√
12 ≈ 53415281

23331273

6

7 lx F: Irrational
8 lx = Irrational (1 % 2) (1 % 2) -- 1

2
+ φ

2

This completes the implementation of the Ergodic PRNG. The actual sequence of
pseudo-random numbers generated according to this algorithm is shown in Appendix
B.

5 Benchmarks
We now estimate benchmark tests on the performance of Ergodic PRNG. The bench-
mark tests are performed on two aspects: statistical randomness and its generation
speed.
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5.1 Randomness test
For the tests, we used the Python implementation of NIST 800-22 test suite[2][4].
The following Table 1 shows the results of testing a pseudo-random number sequence
generated by Ergodic PRNG using NIST 800-22.

Table 1: Test result of NIST 800-22
Test name Value Result

monobit test 0.7286253077289306 PASS
frequency within block test 0.12149948119993939 PASS

runs test 0.9819908995076131 PASS
longest run ones
in a block test 0.11532499498977329 PASS

binary matrix rank test 0 FAIL
dft test 0 FAIL

non overlapping
template matching test -0.8446845109937807 FAIL

overlapping template
matching test 0.05142128621666958 PASS

maurers universal test 1.3011979903245765e-70 FAIL
linear complexity test 0.006549021060733038 FAIL

serial test 0.9017749891453991 PASS
approximate entropy test 0.9968778600697635 PASS

cumulative sums test 0.9821000522967793 PASS
random excursion test 0.2778791285352132 PASS

random excursion
variant test 0.2001052592727655 PASS

The above results show that its randomness is not perfect although the Ergodic
PRNG passes more than half of the tests.

5.2 Generation speed
The computational environment used for the speed measurements is shown in Table 2
below.

Table 2: Environment
OS Red Hat Enterprise Linux release 8.5 (Ootpa)

CPU Intel Core i7 4790K
RAM 32GB

Haskell Stack Version 2.7.3
Stackage LTS Haskell 18.21
Compiler GHC 8.10.7

As a measure of speed evaluation, we compare the generation speed of Xorshift
and RDRAND with that of Ergodic PRNG. RDRAND is an instruction for returning
random numbers from the Intel on-chip hardware random number generator which
has been seeded by an on-chip entropy source.

Table 3 shows the generation speed results of the three algorithms for the case
n = 1000000. The standard time command of Red Hat Enterprise Linux was used for
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the speed measurement.

Table 3: Time and speed
Algorithm Time Speed(bps)
Ergodic PRNG 1:09.75 458,781.3620
Xorshift 0:02.26 14,159,292
RDRAND 0:03.38 9,467,455.621

As can be seen from the above results, the speed of Ergodic PRNG is more than
20 times faster than RDRAND and more than 30 times faster than Xorshift. This is
probably due to the large data structure and the large number of arithmetic opera-
tions including division. Speeding up the generation process is one of the remaining
challenges of Ergodic PRNG.

6 Summary
Ergodic PRNG is a periodless mathematical pseudo-random number generator. While
it has the property of no period, it is inferior to RDRAND and Xorshift in terms of
randomness and generation speed. On the other hand, it has a merit that it is possible
to obtain a sequence of random numbers of arbitrary precision from the same algorithm
because it is internally an irrational number.

Although the generation speed and the randomness are major issues to be solved
in the future, there is a way to solve the randomness problem by using the Ergodic
PRNG as a seed only, instead of using it as a pseudo-random sequence. By using the
output of Ergodic PRNG as a seed, it is possible to generate a pseudo-random number
sequence by another pseudo-random number generator, which eliminates the period
of the existing pseudo-random number generator.
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Appendix A Complete Code in Haskell
In this part, specific operations that are not mathematically relevant in nature are
omitted from the source code. The complete Haskell code is written as follows:

1 module ErgodicPRNG where
2

3 import System.Random ( RandomGen ()
4 , genWord32 )
5 import Data.Int ( Int8
6 , Int16
7 , Int32
8 , Int64 )
9 import Data.Word ( Word8

10 , Word16
11 , Word32
12 , Word64 )
13 import Data.WideWord ( Word256 )
14 import Data.Ratio ( (%) )
15 import GHC.Real ( Ratio ( (:%) ) )
16

17 import Data.Function ( (&) )
18 import Data.Bits ( shiftL
19 , shiftR
20 , xor )
21

22 data Irrational = Irrational Rational -- ^ Rational term of a
23 Rational -- ^ Rational term of b
24 deriving ( Eq )
25

26 instance Show Irrational where
27 show (Irrational 0 0) = "0"
28 show (Irrational 0 b) = show b F+ " * phi"
29 show (Irrational a 0) = show a
30 show (Irrational a b) = show a F+ " + " F+
31 show b F+ " * phi"
32

33 instance Num Irrational where
34 (+) (Irrational a b) -- a+ bφ+ c+ dφ
35 (Irrational c d) = Irrational (a + c)
36 (b + d)
37

38 signum r | r' > 0 = 1
39 | r' < 0 = -1
40 | otherwise = 0
41 where r' = toRationalIr r
42

43 negate (Irrational a b) = Irrational (-a) (-b)
44

45 abs r = r * signum r
46

47 fromInteger a = Irrational (a % 1) 0
48

14



49 toFloatingIr F: Floating a
50 F> Irrational
51 -> a
52 toFloatingIr = fromRational . toRationalIr
53

54 toRationalIr F: Irrational
55 -> Rational
56 toRationalIr (Irrational a b) = a + (toRational b) * phi
57

58 instance Ord Irrational where
59 compare (Irrational a b)
60 (Irrational c d) | n F= 0 = EQ
61 | n > 0 = GT
62 | otherwise = LT
63 where n = (a - c) +
64 ((b - d) * phi)
65

66 divIr F: Irrational -> Irrational -> Irrational
67 divIr a b | a >= b = 1 + divIr (a - b) b
68 | a < b = 0
69

70 modIr F: Irrational -> Irrational -> Irrational
71 modIr a b | a F= b = Irrational 0 0
72 | a > b = modIr (a - b) b
73 | a < b = a
74

75 evenIr F: Irrational -> Bool
76 evenIr r = even (n `div` d)
77 where n :% d = toRationalIr r
78

79 oddIr F: Irrational -> Bool
80 oddIr r = not (evenIr r)
81

82 phi F: Rational
83 phi = 53415281 % 23331273 -- 3

√
12 ≈ 53415281

23331273

84

85 ly F: Irrational
86 ly = Irrational 1 0 -- 1 + 0φ
87

88 lx F: Irrational
89 lx = Irrational (1 % 2) (1 % 2) -- 1

2
+ φ

2

90

91 data Ergodic = Ergodic Irrational
92 Bool
93 deriving ( Eq )
94

95 instance Show Ergodic where
96 show (Ergodic i True ) = show i F+ ", Not bounced"
97 show (Ergodic i False) = show i F+ ", Bounced"
98

99 instance RandomGen Ergodic where
100 genWord32 gen@(Ergodic seed _) = ( mapIntIr False
101 32
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102 seed
103 , next gen )
104

105 mapIntIr F: Integral a
106 F> Bool -- ^ Is signed
107 -> Int -- ^ Numbers of bits
108 -> Irrational
109 -> a
110 mapIntIr s i r = Floor ((toFloatingIr r) * (mb s i))
111

112 mb F: Floating a
113 F> Bool -- ^ Is signed
114 -> Int -- ^ Numbers of bits
115 -> a
116 mb True 8 = fromIntegral (maxBound F: Int8)
117 mb True 16 = fromIntegral (maxBound F: Int16)
118 mb True 32 = fromIntegral (maxBound F: Int32)
119 mb True 64 = fromIntegral (maxBound F: Int64)
120 mb False 8 = fromIntegral (maxBound F: Word8)
121 mb False 16 = fromIntegral (maxBound F: Word16)
122 mb False 32 = fromIntegral (maxBound F: Word32)
123 mb False 64 = fromIntegral (maxBound F: Word64)
124 mb False 256 = fromIntegral (maxBound F: Word256)
125

126 xorshift F: Int -> Int
127 xorshift s = s & (\v -> (v `shiftL` 23) `xor` v)
128 & (\v -> (v `shiftR` 13) `xor` v)
129 & (\v -> (v `shiftL` 58) `xor` v)
130

131 next F: Ergodic -> Ergodic
132 next gen = if bounce
133 then Ergodic ns True
134 else Ergodic (ly - ns) False
135 where Ergodic s b = gen
136 ln = lx
137 (ns, bounce)
138 = if b
139 then ( modIr (s + ln)
140 ly
141 , evenIr (divIr (s + ln)
142 ly) )
143 else ( modIr (ly - s + ln)
144 ly
145 , oddIr (divIr (ly - s + ln)
146 ly) )
147

148 mkErgoGen F: Int -- ^ Seed
149 -> Irrational -- ^ Initialised generator
150 mkErgoGen seed = Irrational (toRational ((xorshift seed)
151 % maxBound))
152 0
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Appendix B A List of Generated Random Num-
bers

The table of random numbers generated by the Ergodic PRNG is shown below. Note
that seed = 4 and the range is the semi-closed interval [0,1).

n ≤ 50 Value n ≤ 100 Value n ≤ 150 Value
1 0.12500000 51 0.36071213 101 0.59642426
2 0.23028576 52 0.00543 102 0.24113850
3 0.58557151 53 0.34985939 103 0.11414726
4 0.94085727 54 0.70514514 104 0.46943302
5 0.70385697 55 0.93956910 105 0.82471877
6 0.34857121 56 0.58428334 106 0.81999547
7 0.00671 57 0.22899758 107 0.46470971
8 0.36200030 58 0.12628817 108 0.10942395
9 0.71728606 59 0.48157393 109 0.24586180

10 0.92742818 60 0.83685969 110 0.60114756
11 0.57214243 61 0.80785455 111 0.95643332
12 0.21685667 62 0.45256880 112 0.68828092
13 0.13842909 63 0.0973 113 0.33299517
14 0.49371485 64 0.25800272 114 0.0223
15 0.84900060 65 0.61328848 115 0.37757635
16 0.79571364 66 0.96857423 116 0.73286211
17 0.44042788 67 0.67614001 117 0.91185214
18 0.0851 68 0.32085425 118 0.55656638
19 0.27014363 69 0.0344 119 0.20128062
20 0.62542939 70 0.38971726 120 0.15400514
21 0.98071515 71 0.74500302 121 0.50929089
22 0.66399909 72 0.89971122 122 0.86457665
23 0.30871334 73 0.54442546 123 0.78013759
24 0.0466 74 0.18913971 124 0.42485183
25 0.40185818 75 0.16614605 125 0.0696
26 0.75714394 76 0.52143181 126 0.28571968
27 0.88757031 77 0.87671757 127 0.64100544
28 0.53228455 78 0.76799668 128 0.99629120
29 0.17699879 79 0.41271092 129 0.64842305
30 0.17828697 80 0.0574 130 0.29313729
31 0.53357272 81 0.29786060 131 0.0621
32 0.88885848 82 0.65314635 132 0.41743423
33 0.75585576 83 0.99156789 133 0.77271998
34 0.400570 84 0.63628213 134 0.87199426
35 0.0453 85 0.28099637 135 0.51670850
36 0.31000151 86 0.0743 136 0.16142274
37 0.66528727 87 0.42957514 137 0.19386301
38 0.97942697 88 0.78486090 138 0.54914877
39 0.62414122 89 0.85985334 139 0.90443453
40 0.26885546 90 0.50456759 140 0.74027971
41 0.0864 91 0.14928183 141 0.38499396
42 0.44171606 92 0.20600393 142 0.0297
43 0.79700181 93 0.56128969 143 0.32557756
44 0.84771243 94 0.91657544 144 0.68086331
45 0.49242667 95 0.72813880 145 0.96385093
46 0.13714091 96 0.37285304 146 0.60856517
47 0.21814484 97 0.0176 147 0.25327941
48 0.57343060 98 0.33771847 148 0.10200634
49 0.92871636 99 0.69300423 149 0.45729210
50 0.71599789 100 0.95171001 150 0.81257786

17



n ≤ 200 Value n ≤ 250 Value n ≤ 300 Value
151 0.83213638 201 0.93215149 251 0.69643936
152 0.47685063 202 0.71256275 252 0.94827488
153 0.12156487 203 0.3572770 253 0.59298912
154 0.23372089 204 0.00199 254 0.23770337
155 0.58900665 205 0.35329452 255 0.11758239
156 0.94429240 206 0.70858028 256 0.47286815
157 0.70042184 207 0.93613397 257 0.82815391
158 0.34513608 208 0.58084821 258 0.81656034
159 0.0101 209 0.22556245 259 0.46127458
160 0.36543543 210 0.12972331 260 0.10598882
161 0.72072119 211 0.48500906 261 0.24929694
162 0.92399305 212 0.84029482 262 0.60458269
163 0.56870729 213 0.80441942 263 0.95986845
164 0.21342154 214 0.44913366 264 0.68484579
165 0.14186422 215 0.0938 265 0.32956003
166 0.49714998 216 0.26143785 266 0.0257
167 0.85243574 217 0.61672361 267 0.38101148
168 0.79227851 218 0.97200937 268 0.73629724
169 0.43699275 219 0.67270488 269 0.9084170
170 0.0817 220 0.31741912 270 0.55313125
171 0.27357877 221 0.0379 271 0.19784549
172 0.62886452 222 0.39315240 272 0.15744027
173 0.98415028 223 0.74843815 273 0.51272603
174 0.66056396 224 0.89627609 274 0.86801178
175 0.30527820 225 0.54099033 275 0.77670246
176 0.05 226 0.18570457 276 0.42141670
177 0.40529331 227 0.16958118 277 0.0661
178 0.76057907 228 0.52486694 278 0.28915481
179 0.88413517 229 0.88015270 279 0.64444057
180 0.52884942 230 0.76456154 280 0.99972633
181 0.17356366 231 0.40927579 281 0.64498791
182 0.18172210 232 0.054 282 0.28970216
183 0.53700786 233 0.30129573 283 0.0656
184 0.89229361 234 0.65658149 284 0.42086936
185 0.75242063 235 0.98813276 285 0.77615511
186 0.39713487 236 0.6328470 286 0.86855913
187 0.0418 237 0.27756124 287 0.51327337
188 0.31343664 238 0.0777 288 0.15798761
189 0.66872240 239 0.43301027 289 0.19729814
190 0.97599184 240 0.78829603 290 0.55258390
191 0.62070609 241 0.85641821 291 0.90786966
192 0.26542033 242 0.50113246 292 0.73684458
193 0.0899 243 0.14584670 293 0.38155883
194 0.44515119 244 0.20943906 294 0.0263
195 0.80043694 245 0.56472482 295 0.32901269
196 0.84427730 246 0.92001057 296 0.68429845
197 0.48899154 247 0.72470367 297 0.96041580
198 0.13370578 248 0.36941791 298 0.60513004
199 0.22157997 249 0.0141 299 0.24984428
200 0.57686573 250 0.34115360 300 0.10544148

18


	1 Introduction
	2 Theory
	2.1 Proof
	2.2 Geometrical Bouncing

	3 Application to Ergodic PRNG
	3.1 Why do we do in Haskell
	3.2 Irrational Expression Type
	3.3 Generator State Type
	3.4 Initializing generator

	4 Choose the optimal combination of parameters
	4.1 The maximum value of y-axis
	4.2  and the maximum value of x-axis
	4.3 Pick an Irrational Number
	4.4 Definition in Haskell

	5 Benchmarks
	5.1 Randomness test
	5.2 Generation speed

	6 Summary
	Appendix A Complete Code in Haskell
	Appendix B A List of Generated Random Numbers

